Optical Materials @ FH Münster University of Appl. Sciences

Prof. Dr. Thomas Jüstel (*1968) e-mail: tj@fh-muenster.de

Studied chemistry & biology at Ruhr-University Bochum, Ph.D.1995

9 Years at Philips Research

- R&D on Luminescent materials
- R&D on (O)LEDs & PDPs
 Since 2004 at Münster University of Applied Sciences
- Laboratory for Inorg. Chemistry and Material Sciences
- Institute for Optical Technologies (IOT)
- ~ 100 Granted US Patents
- ~ 280 Publications
- h-index = 52, g-index = 115

Research Areas

LED + FL Phosphors

Development of novel materials, e.g. oxides, (oxy)nitrides, sulphides, (oxy)fluorides, QDots, particle coatings, spectroscopic characterisation

Afterglow (AG) pigments

Revealing electronic structure of Eu²⁺/RE³⁺ coactivated AG materials Design of the defect structure and density

Particle coatings of nano- or microscale luminescent pigments

Enhancement of efficiency and stability of materials by coatings due to refractive index matching and diffusion barriers, core-shell materials

NIR Phosphors

Biocompatible luminescent materials within the optical window of biomatter, i.e. in the NIR range (diagnostics, photodynamic therapy)

VUV Phosphors

Development of optimised phosphors for noble gas excimer discharges to enable high performance UV radiation sources

Scintillators

Reduction of afterglow of materials for Computed Tomography (CT)
Ultrafast scintillator crystals for Positron Emission Tomography (PET)

Laser materials

RE³⁺ doped fluorides and oxides for solid-state laser Faraday rotators

Phosphors for Light Sources, Detectors, and Displays

Eu ²⁺ Activated Pigment	Emission at
SrSiN ₂ :Eu	700 nm
CaS:Eu	655 nm
CaAlSiN ₃ :Eu	650 nm
(Ca,Sr)AlSiN ₃ :Eu	635 nm
Sr ₂ Si ₅ N ₈ :Eu	615 nm
SrS:Eu	610 nm
Ba ₂ Si ₅ N ₈ :Eu	580 nm
Sr ₂ SiO ₄ :Eu	
SrGa ₂ S ₄ :Eu	535 nm
SrAl ₂ O ₄ :Eu	520 nm
Ba ₂ SiO ₄ :Eu	505 nm
Sr ₄ Al ₁₄ O ₂₅ :Eu	490 nm
SrSiAl ₂ O ₃ N:Eu	480 nm
BaMgAI ₁₀ O ₁₇ :Eu	453 nm
Sr ₂ P ₂ O ₇ :Eu	420 nm
BaSO₄:Eu	374 nm
SrB ₄ O ₇ :Eu	368 nm

Phosphors are the technological backbone of fluorescent light sources, detectors, and displays since they determine energy efficiency, resolution, lifetime, linearity, CRI, color point consistency, image quality, color gamut and so on